9^-x=3^-x/3(81)^x

Simple and best practice solution for 9^-x=3^-x/3(81)^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9^-x=3^-x/3(81)^x equation:



9^-x=3^-x/3(81)^x
We move all terms to the left:
9^-x-(3^-x/3(81)^x)=0
Domain of the equation: 381^x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-1x-(3^-x/381^x)=0
We get rid of parentheses
-1x+x/381^x-3^=0
We multiply all the terms by the denominator
-1x*381^x+x-3^*381^x=0
We add all the numbers together, and all the variables
x-1x*381^x-3^*381^x=0
Wy multiply elements
-381x^2-1143x^2+x=0
We add all the numbers together, and all the variables
-1524x^2+x=0
a = -1524; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-1524)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-1524}=\frac{-2}{-3048} =1/1524 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-1524}=\frac{0}{-3048} =0 $

See similar equations:

| S=40+3t | | 30+25+x=180 | | 0.1(3q-1)=0.2(1-2q) | | 5(k+4)=2(2.5k-3 | | x+3x+9-3x=180 | | 8(b-8=-2b-34 | | P/3+p/4=21 | | 2(t+3)/3=3t-8/3 | | 28=4+4(3x+1) | | (4x-2)+x+77=180 | | 4p+20-14=8p | | 5x-8-2x=3x-8 | | 3x-15/7+x=0 | | 5=12x4 | | 40x-24x=64 | | 10c=100.000 | | -8x-12=-4x+36 | | -4.9x^2+15x+30=0 | | 130-s=82 | | 100x^2-5=-1 | | 20/9x*2-23/3x+5=0 | | n/3=4=17 | | x-1.5=13.5 | | 52+88+2x+(x+2)+(x+10)=360 | | 5(3x+1)=40 | | 2g2+22g+65=0 | | (2x-4)(3x+1)=12 | | 13-y=4y-3 | | 5y+5+5=10 | | 5^(x^2)-3x+2=1 | | 600x=177 | | (3/4x=75) |

Equations solver categories